The Most Efficient Way to Design AI
MLDLNL is a tensorflow based high level API. It facilitates creating machine learning models(for now).
-Python -Numpy -Tensorflow 1.x.x
<p> You can run the module including into working directory. You can also install it into python3. After the installation, you can run the module without including into working directory.</p> Follow this steps for install the module(optional)
git clone https://github.com/alihakimtaskiran/mldlnl.git
cd "mldlnl"
sudo cp mldlnl.py /usr/lib/python[version]
pip3 install numpy
pip3 install tensorflow==1.15.0
Finally, you can use the module in python3 just one lines of code:import mldlnl
mldlnl---| | |---LinReg()--| | |--fit(x,y,lr=0.1,iter_no=80000,loss_fun="L2",lang="en") | |--get_variables() | |--calc(x) | |--save(file_name) | |--restore(file_name) | |--restore_manually(weight,bias) | | |---MultiLinReg(n_of_params)--| | |--fit(x,y,lr=0.05,iter_no=70000,loss_fun="L2",lang="en") | |--get_variables() | |--calc(x) | |--save(file_name) | |--restore(file_name) | | |---Perceptron(neurons=[1,1,1],activation_fun="tanh")--| | |--fit(x,y,epochs=5,batch_size=200,lr=0.01,keep_prob=1.) | |--calc(x,argmax=False) | |--save(file) | |--restore(file) | |--test(x,y) | |--properties() | | |---tools--| | |--split_batch(x,batch_size) | | |---ExpReg()--| | |--fit(x,y,lr=0.01,iter_no=50000) | |--calc(x) | |--get_variables() | |--save(n_of_file) | |--restore(n_of_file) |---CExpReg()--| |--fit(x,y,lr=0.01,iter_no=50000) |--calc(x) |--get_variables() |--save(n_of_file) |--restore(n_of_file)
type:objectLinear Regression object. Use this object to create linear regression models.
fit(x,y,lr=0.1,iter_no=80000,loss_fun="L2",lang="en")</li>
type:method fit() optimizes model with specic loss function. It uses tf.train.AdamOptimizer to find optimum weight and bias
.x
is input,y
is output. lr
islearning rate, it's default 0.1.iter_no
is number of train step.loss_fun
is a string represents loss function.It's default L2, you can also use L1 with "L1"
.
get_variables()</li>
type:method The function exports variables and returns a tupleweight,bias)
calc(x)</li>
type:method
Computes the output value with spesific input.
save(file_n)</li>
type:method
Exports and saves parametrs into a file.file_n
is a string takes name of file. Don't add directory into the string.
restore(file_n)</li>
type:method
Imports and restores parameters from file.file_n
is a string takes name of file. Don't add directory into the string.
restore_manually(W,B)</li>
type:method
This function utilizes restore parameters manually. You can initialize variables by this function.
type:object
n_of_params
is number of parameters.
fit(x,y,lr=0.1,iter_no=80000,loss_fun="L2",lang="en")</li>
type:method fit() optimizes model with specific loss function. It uses tf.train.AdamOptimizer to find optimum weight and bias
.x
is input,y
is output. lr
is learning rate, it's default 0.1.iter_no
is number of train step.loss_fun
is a string represents loss function.It's default L2, you can also use L1 with "L1"
.
get_variables()</li>
type:method The function exports variables and returns a tupleweight,bias)
calc(x)</li>
type:method
Computes the output value with spesific input.
save(file_n)</li>
type:method
Exports and saves parametrs into a file.file_n
is a string takes name of file. Don't add directory into the string.
restore(file_n)</li>
type:method
Imports and restores parameters from file.file_n
is a string takes name of file. Don't add directory into the string.
type:object
neurons
is a list(like [784,256,128,10]
) to represent number of neuron per layer. The list should have at least 3 elements.activation_fun
is specific activation function for perceptron.tanh
,ReLU
and sigmoid
are supported activation functions. Activation function of last layer is softmax
independed from specific activation function.
fit(x,y,epochs=5,batch_size=200,lr=0.01,keep_prob=1.)
type:method fit()
utilizes train perceptron. It uses AdamOptimizer to optimize model.x
is input data and y
is output data to train perceptron. You don't need to split into batchs the data. Percepton
object has internal batch splitting system.epochs
is training epochs.batch_size
is default set into 200.lr
is default set into 0.01.keep_prob
is probibilty of retained neurons after dropout
calc(x,argmax=False)
type: method This function feed forwards an input value. You can compute the output of perceptron.x
is input. argmax
is a boolean. If it's True, the function returns index of maximum value of percpetron's output. If it's False, function returns output of perceptron.
save(file)
type:method It exports parameters of perceptrons into a filefile
is name of the file.
restore(file)
type:method It imports parameters of perceptron from file. file
is name of the file.
test(x,y)
type:method Computes cross entropy loss and accuracy of spesific data. x
is input and y
is true output. Function returns loss,accuracy
properties()
type:method Shows number of neurons in each layer and activation function. Function returns a tuple (neurons, activation function)
type:class
split_batch(x,batch_size)
type:method This function facilates spliting dataset into batchs.x
is input data, batch_size
is size of batch, it's an integer.
type:methodIt optimizes the model with dataset.
x
is dataset's x values and y
is y values of dataset.lr
is learning rate set as 0.01. iter_no
is training steps for optimizer.calc(x)
type:method
Computes the output value with spesific input.
get_variables()
type:method The function exports variables and returns a tupleweight,bias)
save(n_of_file)
type:method
Exports and saves parametrs into a file.n_of_file
is a string takes name of file. Don't add directory into the string.
restore(n_of_file)
type:method
Imports and restores parameters from file.n_of_file
is a string takes name of file. Don't add directory into the string.
type:methodIt optimizes the model with dataset.
x
is dataset's x values and y
is y values of dataset.lr
is learning rate set as 0.01. iter_no
is training steps for optimizer.calc(x)
type:method
Computes the output value with spesific input.
get_variables()
type:method The function exports variables and returns a tupleweight,bias)
save(n_of_file)
type:method
Exports and saves parametrs into a file.n_of_file
is a string takes name of file. Don't add directory into the string.
restore(n_of_file)
type:method
Imports and restores parameters from file.n_of_file
is a string takes name of file. Don't add directory into the string.