mldlnl

The Most Efficient Way to Design AI


Project maintained by alihakimtaskiran Hosted on GitHub Pages — Theme by mattgraham

Documentation

1. What's the MLDLNL?

  MLDLNL is a tensorflow based high level API. It facilitates creating machine learning models(for now).

2.Installation

a.Requirements

-Python
     -Numpy
     -Tensorflow 1.x.x

b.Installation Steps

<p> You can run the module including into working directory. You can also install it into python3. After the installation, you can run the module without including into working directory.</p> Follow this steps for install the module(optional)

·Installation Steps for Linux

  1. Open the terminal. After that
  2. git clone https://github.com/alihakimtaskiran/mldlnl.git
  3. cd "mldlnl"
  4. sudo cp mldlnl.py /usr/lib/python[version]
  5. If you haven't installed numpy, install the numpy with pip3 install numpy
  6. If you haven't installed tensorflow 1.x, install the tensorflow 1.x with pip3 install tensorflow==1.15.0

Finally, you can use the module in python3 just one lines of code:import mldlnl

3.Tree of Module

mldlnl---|
         |
         |---LinReg()--|
         |             |--fit(x,y,lr=0.1,iter_no=80000,loss_fun="L2",lang="en")
         |             |--get_variables()
         |             |--calc(x)
         |             |--save(file_name)
         |             |--restore(file_name)
         |             |--restore_manually(weight,bias)
         |
         |
         |---MultiLinReg(n_of_params)--|
         |                             |--fit(x,y,lr=0.05,iter_no=70000,loss_fun="L2",lang="en")
         |                             |--get_variables()
         |                             |--calc(x)
         |                             |--save(file_name)
         |                             |--restore(file_name)                                   
         |
         |
         |---Perceptron(neurons=[1,1,1],activation_fun="tanh")--|
         |                                              |--fit(x,y,epochs=5,batch_size=200,lr=0.01,keep_prob=1.)
         |                                              |--calc(x,argmax=False)
         |                                              |--save(file)
         |                                              |--restore(file)
         |                                              |--test(x,y)
         |                                              |--properties()
         |
         |
         |---tools--|
         |          |--split_batch(x,batch_size)
         |
         |
         |---ExpReg()--|
         |             |--fit(x,y,lr=0.01,iter_no=50000)
         |             |--calc(x)
         |             |--get_variables()
         |             |--save(n_of_file)
         |             |--restore(n_of_file)
         |---CExpReg()--|
                        |--fit(x,y,lr=0.01,iter_no=50000)
                        |--calc(x)
                        |--get_variables()
                        |--save(n_of_file)
                        |--restore(n_of_file)