The Most Efficient Way to Design AI
MLDLNL is a tensorflow based high level API. It facilitates creating machine learning models(for now).

-Python
-Numpy
-Tensorflow 1.x.x
<p> You can run the module including into working directory. You can also install it into python3. After the installation, you can run the module without including into working directory.</p> Follow this steps for install the module(optional)
git clone https://github.com/alihakimtaskiran/mldlnl.gitcd "mldlnl"sudo cp mldlnl.py /usr/lib/python[version]pip3 install numpypip3 install tensorflow==1.15.0Finally, you can use the module in python3 just one lines of code:import mldlnl
mldlnl---|
|
|---LinReg()--|
| |--fit(x,y,lr=0.1,iter_no=80000,loss_fun="L2",lang="en")
| |--get_variables()
| |--calc(x)
| |--save(file_name)
| |--restore(file_name)
| |--restore_manually(weight,bias)
|
|
|---MultiLinReg(n_of_params)--|
| |--fit(x,y,lr=0.05,iter_no=70000,loss_fun="L2",lang="en")
| |--get_variables()
| |--calc(x)
| |--save(file_name)
| |--restore(file_name)
|
|
|---Perceptron(neurons=[1,1,1],activation_fun="tanh")--|
| |--fit(x,y,epochs=5,batch_size=200,lr=0.01,keep_prob=1.)
| |--calc(x,argmax=False)
| |--save(file)
| |--restore(file)
| |--test(x,y)
| |--properties()
|
|
|---tools--|
| |--split_batch(x,batch_size)
|
|
|---ExpReg()--|
| |--fit(x,y,lr=0.01,iter_no=50000)
| |--calc(x)
| |--get_variables()
| |--save(n_of_file)
| |--restore(n_of_file)
|---CExpReg()--|
|--fit(x,y,lr=0.01,iter_no=50000)
|--calc(x)
|--get_variables()
|--save(n_of_file)
|--restore(n_of_file)
type:objectLinear Regression object. Use this object to create linear regression models.
fit(x,y,lr=0.1,iter_no=80000,loss_fun="L2",lang="en")</li>
type:method fit() optimizes model with specic loss function. It uses tf.train.AdamOptimizer to find optimum weight and bias.x is input,y is output. lr islearning rate, it's default 0.1.iter_no is number of train step.loss_fun is a string represents loss function.It's default L2, you can also use L1 with "L1".
get_variables()</li>
type:method The function exports variables and returns a tupleweight,bias)
calc(x)</li>
type:method
Computes the output value with spesific input.
save(file_n)</li>
type:method
Exports and saves parametrs into a file.file_n is a string takes name of file. Don't add directory into the string.
restore(file_n)</li>
type:method
Imports and restores parameters from file.file_n is a string takes name of file. Don't add directory into the string.
restore_manually(W,B)</li>
type:method
This function utilizes restore parameters manually. You can initialize variables by this function.
type:object
n_of_params is number of parameters.
fit(x,y,lr=0.1,iter_no=80000,loss_fun="L2",lang="en")</li>
type:method fit() optimizes model with specific loss function. It uses tf.train.AdamOptimizer to find optimum weight and bias.x is input,y is output. lr is learning rate, it's default 0.1.iter_no is number of train step.loss_fun is a string represents loss function.It's default L2, you can also use L1 with "L1".
get_variables()</li>
type:method The function exports variables and returns a tupleweight,bias)
calc(x)</li>
type:method
Computes the output value with spesific input.
save(file_n)</li>
type:method
Exports and saves parametrs into a file.file_n is a string takes name of file. Don't add directory into the string.
restore(file_n)</li>
type:method
Imports and restores parameters from file.file_n is a string takes name of file. Don't add directory into the string.
type:object
neurons is a list(like [784,256,128,10]) to represent number of neuron per layer. The list should have at least 3 elements.activation_fun is specific activation function for perceptron.tanh,ReLU and sigmoid are supported activation functions. Activation function of last layer is softmax independed from specific activation function.
fit(x,y,epochs=5,batch_size=200,lr=0.01,keep_prob=1.)
type:method fit() utilizes train perceptron. It uses AdamOptimizer to optimize model.x is input data and y is output data to train perceptron. You don't need to split into batchs the data. Percepton object has internal batch splitting system.epochs is training epochs.batch_size is default set into 200.lr is default set into 0.01.keep_prob is probibilty of retained neurons after dropout
calc(x,argmax=False)
type: method This function feed forwards an input value. You can compute the output of perceptron.x is input. argmax is a boolean. If it's True, the function returns index of maximum value of percpetron's output. If it's False, function returns output of perceptron.
save(file)
type:method It exports parameters of perceptrons into a filefile is name of the file.
restore(file)
type:method It imports parameters of perceptron from file. file is name of the file.
test(x,y)
type:method Computes cross entropy loss and accuracy of spesific data. x is input and y is true output. Function returns loss,accuracy
properties()
type:method Shows number of neurons in each layer and activation function. Function returns a tuple (neurons, activation function)
type:class
split_batch(x,batch_size)
type:method This function facilates spliting dataset into batchs.x is input data, batch_size is size of batch, it's an integer.

type:methodIt optimizes the model with dataset.
x is dataset's x values and y is y values of dataset.lr is learning rate set as 0.01. iter_no is training steps for optimizer.calc(x)
type:method
Computes the output value with spesific input.
get_variables()
type:method The function exports variables and returns a tupleweight,bias)
save(n_of_file)
type:method
Exports and saves parametrs into a file.n_of_file is a string takes name of file. Don't add directory into the string.
restore(n_of_file)
type:method
Imports and restores parameters from file.n_of_file is a string takes name of file. Don't add directory into the string.

type:methodIt optimizes the model with dataset.
x is dataset's x values and y is y values of dataset.lr is learning rate set as 0.01. iter_no is training steps for optimizer.calc(x)
type:method
Computes the output value with spesific input.
get_variables()
type:method The function exports variables and returns a tupleweight,bias)
save(n_of_file)
type:method
Exports and saves parametrs into a file.n_of_file is a string takes name of file. Don't add directory into the string.
restore(n_of_file)
type:method
Imports and restores parameters from file.n_of_file is a string takes name of file. Don't add directory into the string.